THEORY OF MAGNETOACOQOUSTIC WAVE GENERATION
BY MECHANICAL RADIATORS

V. P. Dokuchaev UDC 538.57

Aspects of the radiation of magnetoacoustic waves by an oscillating plane piston and by a
radially pulsating cylinder and sphere are discussed. Expressions are derived for the mag-
netohydrodynamic perturbation fields in the medium. The radiation reaction forces acting
on the given bodies are determined. The significant distinction between the theory of so~
called "magnetic" sound generation and the theory of ordinary sound radiation is demon-
strated. For example, the directivity pattern of a magnetic radially pulsating cylinder or
sphere has a dipole character, whereas for ordinary sound generated by the same sources
the pattern is isotropic, i.e., monopolar. ’

Magnetohydrodynamic processes are described by a system of coupled hydrodynamic and electro-
magnetic equations [1]. As a result, hydromagnetic perturbations can be created either by mechanical
means, i.e., by oscillating or pulsating bodies, or by electrical charges and currents. The radiation of hy-
dromagnetic waves by electrical currents has been analyzed in detail in [2-5]. We now investigate the gen-
eration of such waves by mechanical radiators. We find the radiation reaction forces acting on the wave
sources, using the method of force sources [6].

1. Integral Form of the Solution of the Linear

Magnetohydrodynamic Equations

The system of linear magnetohydrodynamic equations for an inviscid medium in the presence of ex-
ternal forces with a spatial density f has the form

Poar = — Vp + — (rot h) x Hy -+ .1
—?,% =rot (v X Hy) .2)
%E:——l—podivv=0 1.3)

(1.4)

p=cs?

Here py and Hy are the unperturbed density and magnetic field in the medium; cg is the speed of sound;
and p, P, v, and h are the density, pressure, velocity, and magnetic field perturbations. We assume that all
the perturbations vary harmonically with time as exp (—iwt), where w is the frequency of the process. In
this case we readily obtain the following equation for the velocity from the system (1.1)-(1.4);

cs* grad divy -+ c4* [rot rot (v X ep)] X ey + ov = lof/p, @-5)
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where cp = Hy/(@ mpg)Y2 is the Alfvén velocity, and ey is the unit vector of the field Hy. From now on we
drop the time factor exp (~iwt) from the functions v and f for brevity of notation.

The spatial density of forces f is expressed by the formalism of generalized functions in terms of the
grazing surface force vector:

= T6s (1.6)

where dg is the Dirac delta function, whose argument is the equation for the surface of the body [7]. The
integral of £ over the normal to the surface yields the function T. By the laws of mechanics (—T) is the
force exerted on the body by the medium (the reaction force of the medium). Equation (1.5) refers to right-
sided vector differential operators, whose analysis is considerably more complex than for scalar operators
{8l.

In an inviscid medium the normal component of the velocity at the surface of the body must be equal
to the corresponding velocity component of the body [9]:
a.7

V‘S = Ul

where n is the outward normal unit vector relative to the surface of the body. It is assumed here that the
bodies creating the perturbations in the medium are metals (whose conductivities are large in comparison
with that of the surrounding medium), so that wv—uylgx-n = 0.

We formulate the fundamental problem in application to relations (1.5)-(1.7). It is required to deter-
mine the surface force T (1.6) from the known differential operator (1.5) subject to the boundary condition
(1.7). Thus stated, the problem belongs to the class of inverse problems of the theory of differential equa-
tions, wherein the right-hand side of an equation is to be determined from a known operator and boundary
conditions [10]. Inverse problems of this type are ordinarily reduced to integral equations for the unknown
right~hand side of the primary differential equation. For example, in the theory of subsonic flow past slen-
der bodies an integral equation is obtained for the distribution of mass sources and sinks.

The wave radiation intensity I is related to the force T by the simple expression

. {1.8)
I = —1,(vIT")s
in which T * denotes the complex conjugate.
To solve the problem we use the Fourier transformations
1 doe LI
v, (k) = 'S'FSSS V@)@ dr, (k) = 5o Nf(r) ¢l kn) gy (1.9)
and the corresponding inversion formulas
+ s
v = vi@eiomds, 1) ={{{f () e di (1.10)

oo —

dr = dzdydz, dk = diydkydk, (kr) = ke + kyy + k.

8

in which vy () and f; k) are the Fourier transforms of the velocity and force density. It is assumed that the
functions v and f admit Fourier transformation in generalized function spaces [7, 11}]. We choose the z
axis of our coordinate system (x, y, z) in the direction of the magnetic field H (e; = efg). Applying the
transformation (1.9) to Eq. (1.5), we obtain a vector algebraic equation for v; k), from which we find the
components of that vector. Using the inversion formulas (1.10), we obtain the following integral form of
the solution of Eq. (1.5):

o0
. k(b fo.—k f..) k(mz—c%?)(kxf A~k f..Y etk k f . (1 11)
. v\ Yy e & 1y x 5%z 1x Y 1y S TxV2 1z | -4 B
Povz = 1 SS‘[ (k’acﬂ f kv2) Dy = (kxz ; kyz) Dg ™ Dg ]e 0k
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~+-00
e Tralihy — byt | R @—ogk D ) | ek d]
ooy = 1o\ [ e+, e @.12)

—_—0

e-itkn) gk (1.13)

F20 o2 (o2 2y (h 2k 242 2
pov, = i(’)SSS [0 — (c4* +eg?) (k, +1;,S+ N, + egtk, (ki)

The following notation is used above:
D= o*—cs%% Ds= o — [0 {cl® + cs®) — ca%sk,?) (k.2 + k2 + k,2)

The conditions DA = 0 and Dg = 0 yield dispersion relations for Alfvén and magnetoacoustic waves

with phase velocities

c el Y (64 -+ o) — e 2ccosta
Ug= ¢4 co8a, ul=—_—2"F5 Vs 25 A8 _ (1.14)

where « is the angle between the vectors k and Hy, and u, are the respective speeds of the fast and slow
magnetoacoustic waves. A complete analysis of the dispersion relations and their corresponding wave sur-
faces may be found in [12].

For the plane problem, in which £ = f (x, z) and v = v(x, z) we find the following from (1.11)-(1.13):

o
e (02 — g™k ®) for 1 5k K ]y —ik_x-ik
Poly = L@ SS @ — [(c4® + 65D OF — ¢ etk *] (k:z =) e "= etk dk, 1.15)
4o
R R R e e e P L ) ) I 1.16
P, = iw SS oy = [Z(CA-Z T egh 0F — ¢ g2k 7] (kz'z = /:z-z) e ¥ gl dik, ( )

—o0

povy = 0

Here we have made use of the method of integral descent on the y coordinate [7, 11]:

“+oo
i) = i 1 2 e de = £, 05 () 1.17)

—o0

| .
1 (¢ ik X4k, 2
B(k) = gz \| 1@ 9@ dodz (1.18)

—00

The integral forms of the solution (1.11)-(1.16), (1.17), (1.18) are used below to analyze problems in

the generation of magnetoacoustic waves.

2.

Radiation by an Oscillating Piston

We consider the radiation of magnetoacoustic waves by a plane oscillating harmonically at a frequency

w in the direction of the normal to the surface. The normal forms an angle & with the z axis, along which
the force lines of the field Hy are directed (Fig. 1). The zx plane contains the normal to the surface. The
boundary condition (1.7) has the following form in projections onto the x and z axes:

Vils = — Ugsing, v,|s = Uy c08 x 2.1)
The s plane is given by the equation

zsin @ —zcos a =0 2.2)

Invoking the theory of generalized functions, we express the distribution of the spatial force density

f in terms of the surface force T:
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f=(T,e.+ T,e,)d(xsina — zcos x) (2.3)

where Tx and Ty are the projections of the unknown force T exerted by
unit area of the piston surface on the medium, ey and e, are the unit

vectors in the x and z directions, and 8 is the Dirac delta function. Due
to the magnetic anisotropy of the properties of the medium, the force T
in general does not coincide in direction with the normal to the surface.

The Fourier transform of the distribution (2.3) is found from Eg.
(1.18):

Fig. 1

xx+

T e
'—————‘zé(k sina + k,cosa) (2.4)

fo (k) =

This means that the Fourier transform of the function f with respect to x and z exists only in the
sense of generalized functions, having the form of the delta-distrubution function (2.4) in k representation.
Substituting expression (2.4) into Egs. (1.15) and (1.16) and integrating on kz, we obfain

L e
iwsina (0 —cgthetg?a) T’ — kT ciga iezetga) gy (2.5)
2npy wtsin?a — [(c,% 4 cg?) @* — K 4lcgt ctga] K !

—o0

U=

Lo Fw 2 (.2 2 S k21 T — c2k2T_ctga :
v, = tmsmuS [0 —(cg* festcosect ) 2] T — ekl U8 E  ine—zotg) g (2.6)

2mp, ofsin? a — [(c,2 + c5%) 0F — ¢ JPegh? ctglaj &2

—0

Here we have dropped the subscript x from the wave number ky. The improper integrals in (2.5) and
(2.6) are most readily computed in the complex plane of the variable k. The rules for bypassing the poles
of the integrands are adopted in accordance with the radiation principle, i.e., so that the solution with in-
clusion of the time factor exp (—iwt) will have the form of plane waves traveling into the left half-space
from the plane (2.2):

2 2 2 — 2 i
(u?—~cgtcos?a) T —cg®T sinacosa

z sma——zcosz)]

exp [— o) (t -+

v, =
x Pot, (2,2 — u_%)
(u_?—cg?cos?a) T, — ¢g®T, sin o cosx zsina —zcosa (2.7)
— R TR exp | —io [l 4+ ——F——
b (u+2_,,Az_cszsin2a)Tz——cSZszinacosa ox . . xsina~—zcosa>}
z = oty (u,2 — u_?) P Ea Uy

(w?—c,—cgsin?a) T —cl?T sinacosa
_ A S z .S X exp[ l(l)(t+

Pou_{u,’> —u_?

z sin a—zcos a)']

e - (2.8)

In relations (2.7) and (2.8) u, denotes the phase velocities of the fast and slow waves 1.14).

For the determination of the unknowns Ty and T, we use the boundary conditions on the surface of the
plane. Thus, from relations (2.1), (2.2), (2.7), and (2.8) we obtain the system of algebraic equations

(u+y_ +cg?costa) Ty + T, sinacos o = — polgu,u_(u, + u_)sina 2.9)
es?T sinacosa + (u,u_ + ca? +cs? sin «) T, = poupe u_ (v, + u_}cos x 2.10)
which has the simple solution
P i .
T, = —Z—':Oil—r;}(uf—ku_z%—uﬂyu_) (2.11)
Polto COS
T,= L“’""Jhou“ (wyu. + ¢s?) 2.12)

The quantities Ty and T, taken with the opposite signs yield the components of the radiation reaction
force exerted by the medmm on unit area of the oscillating surface. As Egs. (2.11) and (2.12) reveal, the
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vector T does not coincide in direction with the normal n (Fig. 1). Exceptions are the special case cp = 0,
as well as ¢ = 0 and « = 7/2, in which case T = Tn.

Expressions (2.11) and (2.12) are simplified in the two extreme cases of a hot medium,cg > cp, and
a cold medium, cp > cg [13]. Thus, for cg > cp we have u+ >~ cg, u_~ cp cos « (1.14), and
2

T~ — pyesipsina (1 + -%2 cos oc) » T, pcsuecosa (2.13)

In the case cj > cg we have uy =~ ¢y, u. ~ cg cos a, and

2
T, =~ pougcq sina (1 — —Z—S—z cos oc), T, = pougescosa (cos a _Z_S_) (2.14)
A A

Note that if cg—0, then T, —0.

Substituting T, and T, from Egs. (2.11) and (2.12) into (2.7) and (2.8), we obtain final expressions for
the velocity components: '

ve = — 9 [uexp (IV,) — utexp (i) (2:15)
vy = (et — ut)exp (i) — (65— u,7) exp (i) (2.16)

I _u?
u,?—u

in which the following notation is introduced for the phase of the fast and slow magnetoacoustic waves:

Yp = — 0 (t + ( sina — zcos «)/u) (2.17)
From relations (1.2)-(1.4) and Egs. (2.15)4(2 17) we obtain
P u; °_u°u . [u.+2 sin’ o (ulzj — gl coste exp (iY,) — u;z sinte _u_(u+2 — ) exp (iIP_)} (2.18)
hy = H“% [, xp (i,) — u_ oxp ()] (2.19)
he = Ho 0% (u, exp (i9,) — u_exp (i9.)) (2-20)
vy=h,=0, p=cgp (2.21)

It is important to bear in mind that the linear equations (1.1)~(1.4) were obtained under the condition
[h|/Hy <1, (p/pg) «1. On the basis of (2.18)-(2.20) these inequalities assume the form |h/Hy| = (yp/u,) «1
and, analogously, |p/p | = (ug/u,) <« 1.

Consequently, a necessary condition for linearization is (u;/uy) <« 1, which is the same as the famil-
iar condition in acoustics, uy < cg for eg > cy. We also point out that real pistons have finite dimensions
for the oscillating surface. We have assumed here, by analogy with acoustical theory, that the maximum
radiated wavelength A L = (2ru /w) <« {, where / is the minimum dimension of the piston surface.

The radiation intensity is determined according to Eqs. (1.8) and (2.11)-(2.12):

I= -—————2(ui"'ffu_) [ca®sin® « 4 cg® + w,u_] 2.22)

In the derivation of (2.9)-(2.22) we used the simple relations

2 2 =
ultul=rcp®tesl, uu_ =cuscosa
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M which follow from (1.14). For the two extreme orientations of the oscillating

ZT | a plane we have according to (2.22)
| Polsii® [ 2 for a=20
I = e 2.23
/T%\w {pol/cA'z—l—cszuo“M for a=m/2 ( )
\‘b/ z Therefore, if the normal n ||H;, ordinary sound is generated; but if n 1 Hy,

a fast wave is radiated with a phase velocity u, = (cA + cs)% Thus, the problem
of the radiation of sound by an oscillating plane is solved for any values of the
Fig. 2 velocities ¢y and cg.

3. Radiation of Magnetic Sound by a Pulsating Cylinder

For more complex radiators, such as a radially pulsating cylinder or sphere, the radiation problem
cannot be solved for arbitrary values of cp and cg. We therefore limit the present discussion to the genera-
tion of so-called "magnetic sound" in a cold medium, i.e., for cg = 0 [13]. The other extreme case, cp =0,
cg = 0, has been thoroughly investigated in acoustics, and we shall not discuss it further.

Let us consider the generation of magnetic sound by a circular cylinder whose axis is directed along
the y axis (Fig. 2), i.e., perpendicular to the force lines of Hy. The velocity perturbations due to radial pul-
sations of the cylinder are again determined by Egs. (1.1)-{1.16) for cg = 0:

f —~ik px—ik_z
Povs = i» \R wl—c,? (27: +k')e “dkydky; vy =0 @.1)
" ik v~k
14 -k -2
Db, = — 53 fa€ 7 ke, die, 3.2)

Once again we omit the time factor exp (—iwt). The boundary condition {1.7) on the surface of the
cylinder now has the form

Uy = UgCOSP, U, ==UugSinQ for r=a 3.3)

where ug is the velocity amplitude of the radial oscillations of the surface of the cylinder, u; = aqw, and ay
is the radial displacement, which we assume to be small in comparison with the average radius of the
cylinder: a; <« qy- Throughout the ensuing analysis we adopt as the independent variables the polar coordi-~
nates x =r cos ¢,y = r sin ¢ (Fig. 2). We represent the distribution of the force density f in the form
T T
P x(w)ext :@e, 8(-— a) (3.4)
Vra
where Tx(p) and T,(¢p) are the components of the force exerted on the medium by unit length of the cylinder.
These unknown functions of the angle ¢ are to be determined by means of the boundary conditions {3.3) and
relations (3.1) and (3.2).

It is a particularly simple matter to determine T, {¢). Thus, we have by virtue of (3.2) and (3.3)

T,(g) = — ipeugwcos@lim Y ra/8(r —a) =0 ©-5)

because by definition lim 8 (r —a) = © as r —a.* To determine the distribution of Ty{p) we substitute
(3.4} into the integral (1.18):

2n
fax = _[;;1_‘? S T, (¢) ke cos (@) do (h, =kcosq', ik, =ising’) 3.6)

1]

We use the familiar representation
+oo
gHacos (- __ Z ian (ka) R (3.7)

‘nt_-;-co
*See [14, 15] with regard to the radial Dirac delta function 6(r —a) and other delta~function representations.
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in which J, is a Bessel function of the first kind of order n. From relations (3.6) and (3.7) we find

+o
fax Uy @) = 5 D) "Tnd (k) ™ (3.8)
- N=—=-00
1 T ine = T _ing
Ton=gz \Tul@) 6™ dg, To= 3 Tue (3.9)
g nE=—00

We substitute relation (3.8) into the primary integral (3.1) and once again, making use of the repre-
sentation (3.7), find

oo oo imomsa oo 2 @ )
- : U0 itnemyer 5 ¢ KT (ka) T, (k) dk 3.10
o =io B F Tae g\ ag]{ S i €10
= 00 Tl 00 0 - (1]

The integral on @' gives the Kronecker delta function 6y, which permits summation over m to be
carried out in Eq. (3.10). Then the second integral, which contains a product of Bessel functions, goes
over to the well-known integral [16]

L)

> kJn(ka) J, (kr) _—
S w2 — cAzkz -

— 2—’:;—2 Talkot) Ho @ (hot) for r>a (3.11)

in which Hn(i) is a Hankel function of the first kind and k; = w/cp is the wave number. Therefore, expres-
sion (3.10) assumes the form

~}-00
pove (1, ©) = 55 2 Tanln (o) HLD (hor) € (3.12)

TR0

If we substitute the expression (3.9) for Ty, into (3.12) and use the addition theorem for cylinder
functions, we obtain the integral representation

2n
o s ©) = s \ T (@) B, Uy VP & Zarcos 7 7))
0

From (3.12), using the boundary condition (3.3), we find

— ‘Sn, 1 + 611. ~1
sy, (kya) H @ (i a)

PolbaC 4 3.13)

xn

and on the basis of (3.9) we finally obtain

_ 2Po"o°A cos @
Tx - ﬁkoJl (koa) Hil) (koa) (3-14)

The perturbations in the medium are easily determined with the help of (1.2)-(1.4), (3.12),and (3.14):

HO (yr) o = ipg 0. kgr cos® QHYY (kor) 4- sin® gHD (k,r)
HY (kya)’ N kgrH{Y (kg2
kg HY (k) — HY (k1)
(1)
kgrHY (k a)

U, = UpCOS @

U
hy = iH,—% sin ¢ cos
X 0

ca

hz:Hog’_o, v,=v,=0, h,=0, p=0 3.15)

Thus, with regard for the factor exp (—iwt) it is apparent that relations (3.15) describe for kyr >1
cylindrical magnetoacoustic waves diverging from the cylinder, because the asymptotic behavior of the
function Hy @) and its derivative has the form Y exp (ikyr) [16].
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The distribution of the radiation intensity with respect to the polar angle is found according to Egs.
(1.9) and (3.14):

a7 pouOZcA cos? ¢ (3 .16)

@ ko [T (o) + N1 (koa)]

where Ny is a Neumann function. Consequently, the directivity pattern in the xz plane has a dipole charac-
ter. The radiation is zero along the dipole axis ¢ = 7/2. The total intensity

- Po¥o®C 4 {3.17)
T ko [J1? (koa) 4 Ni® (koa)]

has the simple asymptotic behavior

{ 1mPpguglaie for ka1 (3.18)
T Yampguplean  for ka1

Relations (3.18) are analogous to the corresponding equations for the intensity of ordinary sound
radiated by a pulsating cylinder [9, 17]. The principal distinction of magnetic from ordinary sound is the
fact that its waves have zero pressure perturbations, p = 0, and the velocity perturbations are anisotropic.
In place of hydrodynamic pressure, magnetic sound has the magnetic pressue due to the presence of the
magnetic field perturbations. The dipolar directivity pattern (3.16) is a consequence of the magnetic aniso-
tropy of the properties of the medium.

4. Radiation by a Pulsating Sphere

The solution of the problem of the radiation of magnetic sound by a pulsating sphere is analogous to
the preceding, and we can therefore omit the intermediate calculations. To simplify the analysis we as-
sume that the radial oscillations of the sphere are axisymmetric about the z axis, which is aligned with the
force lines of the magnetic field Hy. Now Alfvén waves are not excited, and the condition rot, f = 0 (rot =
curl) or, in k representation, kxfly = Ky f1x holds, which in the event of an axisymmetric distribution of the
velocity field on sphere is strictly deduced from the general relations (1.11)~(1.13) for any cg and cp (see
also [5}). From the general relations (1.11)-(1.13) under this condition and the assumption ¢g = 0 we obtain

+os —i(kr)
povs, = o {{{ e (4.1)
Y 30 o —¢ 2 (k 2+ ky2 + kzz)

PoUz = ifz/(-o (4-2)

The distribution of the forces f on the surface can be represented in the form
F=I(T:(9 8)e. + Ty (9, 8)e, + T. (¢, 0)e,]8(R — Ry)/ RR, #-3)

The independent variables in this expression are the spherical coordinates R, 9, ¢ with polar axis
along z; Ry is the radius of the sphere. On its surface the boundary condition (1.8) for homogeneous radial
pulsations is written in the form

4.4)

Uy =1UuysinBcos¢, v, =1u,sinlsing, v,=uycosh

where u; = wRy is the velocity amplitude of the radial oscillations of the sphere, and we assume here that
Ry « Ry. The time factor exp (iwt) is omitted everywhere. As in the case of the pulsating cylinder, we find
the following at once from Egs. (4.2)-(4.4):

T opouolRocos O )
Tz(@76)~1}iflgm—0 (4.5)

For the analysis of the integral (4.1) we introduce the spherical coordinates

k, = qcos®’ k., = gsinb cos ¢, k, = gsin 0 sin ¢’
2 q y q
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and use the following expansion of the exponential function:

oxp (— igR 005 ) = (o )" D} 1" 20+ 1) T, 0R) Pr (c05 )
n=0 : 4.6)
cosPp = cos 0 cos 0 4 sin 0 sin 0’ cos (9 — ¢)
Here Jn+1/‘2 are Bessel functions, and P, are Legendre polynomials, for which the addition theorem
yields

n

P, (cosp) = z —%—-T:H;'—‘ P,.™ (cos0) P,™ (cos §') eime—+) 4.7)

It is clear from the foregoing that the unknown functions Tx,y(cp, ) are conveniently sought in the
form of an expansion in sphere functions P

oo +n
=2 D Tuy(n,m) P," (cos0)eime 4.8)
n=f Mas=—n
From Eqgs. (1.19), (4.6)-(4.8) we find
huew = 27 (D) D Z T ey (1, m) T, (qRo) Py (03 0) eims (4.9)
. n=Q Mm=—n

Substituting (4.9) into the integral (4.1), we obtain

Lo +n

Povr,y (R, 9,0) = m 2 Z Ty (7, m) T, (koRoYH Sy, (RoRo) P (cos B) €m? (4.10)

n=0 m=—n

where k; = w/cA. Equation (4.10) is exactly analogous to (3.12). We.can use (4.10) to determine Ty,y for

rather arbitrary boundary conditions on the surface of the sphere, as long as they are, as mentioned, axi-
symmetric about the z axis. In the case of homogeneous radial pulsations of the sphere (4.4) we find the

following from relations (4.8) and (4.10):

2pouoc 42Rosin O cos @
xny = - m { . } (4 -11)
nwJ 3/, (koRu) Hif) (koRo) \sim@
and the velocity perturbations have the form
H (0R)  (cos
= g sin O ——h 0 ‘P}, =0 4.12)
Uiy = Uo S H{) (ko Ro) {sin P Ve

In Egqs. (4.11) and 4.12) cos ¢ refers to the x components. The magnetoacoustic radiation intensity
in an element of solid angle dQ = sin ¢ dgde is determined by means of (4.11) according to Eq. (1.8):

L. Pouelp T sin? 0 - (4.13)
dQ o [J3, (kuBc_.)—i— ./l(koﬁo)]

Consequently, the directivity pattern for the radiation of magnetic sound by a radially pulsating sphere
is dipolar, by contrast with the acoustic case cp = 0, c§ = 0, when the same sphere generates isotropic
radiation {acoustic monopole) [9]. The total radiation intensity is

4repouc®e 4 ko2 Rot 4.14)

[= 31+ kPR,

Here we have relied on the well-known formulas

Tie) = ()" (S22 —cosa), Nuu@) = (5 j;)" (sine - 2222) (4.15)

/
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Thus, in cold magnetoacoustic media, in which the magnetic pressure Hy/4m greatly exceeds the hy-
drodynamic pressure py, the latter condition being equivalent to cj > cg, the mechanical motion of solids
generates magnetic sound. The latter radiation differs significantly from ordinary sound generated by the
same radiators in cold media, cg > ca. This conclusion is also true for more complex radiators than those
considered here. We also point out that the results obtained above [see (3.12) snd (4.10)] can be used as a
basis for analyzing the generation of magnetic sound by cylinders and spheres having more complex pulsa-
tion velocity distributions over their surfaces, by analogy with the familiar problems of acoustics {8].
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